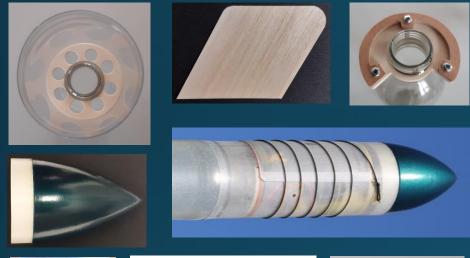
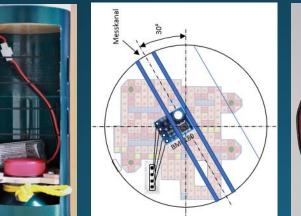
Konstruktion von hochfliegenden

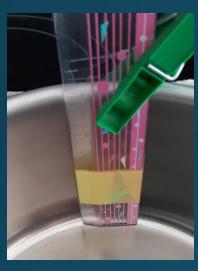
Wasserraketen


Erstellt von Pius Hurni


Inhalt

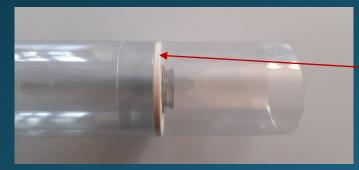

- Hauptkomponenten der Rakete
 - Bau des Druckbehälters aus 500 ml PET Flaschen
 - Bau weiterer Komponenten
 - Auswurfmechanik für den Fallschirm
 - Messkanal für Druckluftsensor
- Elektronik und Software
 - Bauteile und LED Anzeigen
 - Betriebsarten und Ausgabe der Flugdaten
 - Software Entwicklung
 - Drucksensor Berechnungen
 - Simulation Software, höchstem Punkt und Landung
- Konstruktion Startrampe
 - Aufbau zur Betankung von Wasser und Druckluft
 - Ablauf der Startphase
 - Faktoren welche die Flughöhe beeinflussen
- Berechnungen und Simulation
 - Beschleunigung, Druck, Geschwindigkeit
 - Analyse Flug von Raptor III
- Videos von Raketenstarts

Hauptkomponenten Rakete



- Druckbehälter mit Startführung
- Leitflächen
- Adapter Nutzlastbehälter
- Raketenspitze
- Mechanik Fallschirmauswurf
- Druckluft Sensor / Messkanal
- Elektronik

- 500ml PET Flasche
 - Zylindrischer Teil mit Papiermesser ausschneiden
 - Mit heissem Wasser einseitig bis 20mm schrumpfen
 - Die Segmente müssen genau ineinander passen
 - Die Klebestellen und Oberflächen anschleiffen


- Kleben mit Araldite
 - Beim Zusammenfügen die Segment genau ausrichten
 - Überschüssiger Klebstoff beidseitig entfernen
 - Ein Segment nach dem anderen kleben und aushärten lassen
 - Der Zusammenbau braucht mehrere Tage

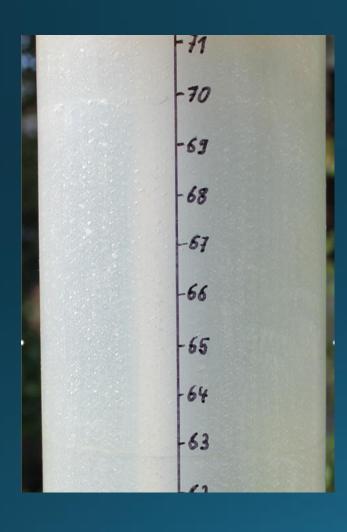
Ring aus Flaschenhals

Flansch

Startführung wird zwischen zwei Segmente geklebt

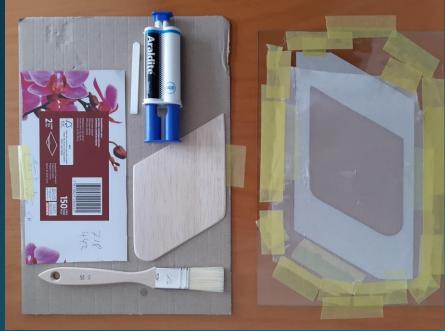
- Startführung
 - Sie ist im Druckbehälter montiert
 - Position ist bei 1/3 der Gesamtlänge des Druckbehälters
 - Die Startführung besteht aus Flaschenhalsring und Flansch
 - Der Flansch dient zur Befestigung des Rings am Druckbehälter
 - Der Flasch hat Löcher für den Druckausgleich

- Abschluss Druckbehälter
 - Beidseitig wird ein Flaschenhals für den Abschluss verwendet
 - Der Flaschenhals lässt sich am einfachsten mit Faserschlauch verstärken
 - Beim Bau werden beide Enden zuletzt an den Druckbehälter geklebt

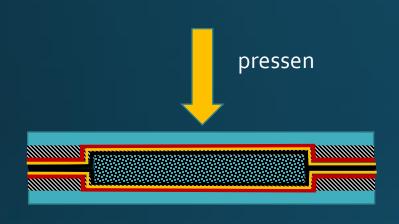


- Verstärkung
 - Mit Glas- oder Kohlefaserschlauch
 - Dreh-Mechanismus ist erforderlich
 - Horizontal, langes Rundholz
 - Zur Drehung verwende ich einen Motor vom Lego Roboter
 - Bei Kohlefaser
 - 20 cm langer Bereich ist aus Glasfaser für Wasserstandsanzeige
 - Schlauch Segmente überlappen sich mit 20 mm
 - Während der Trocknungszeit langsam drehen

Druckbehälter – Epoxidharz anbringen


- Faserschlauch mit Epoxidharz kleben
 - Maske, Vinylhandschuhe und Augenschutz tragen
 - Raumlüftung garantieren
 - 2-komponenten Epoxidharz vorbereiten und anbringen
 - Behälter ständig drehen, auch beim Trocknen

- Feinbearbeitung
 - Schleifen mit Sandpapier
 - Keine Verstärkung wegschleifen, nur Harz
 - Am besten kontrolliert man mit einer Schieblehre den Durchmesser
 - Die Verstärkung wird ca. o.3mm dick


Konstruktion Leitflächen

- Optimiert auf Stabilität und kleines Gewicht
 - Kern aus Balsaholz 1.5mm dick
 - Verstärkt mit Glasfaser und Araldite
 - Dicke ca. 2.1mm
 - 3 Stück, trapezförmig
 - Wiegt bei 110 x 115 mm, ca. 10 g

Konstruktion Leitflächen

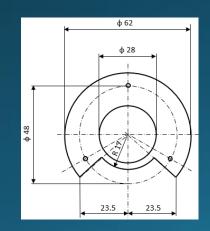
- Glasplatte
- Maske aus Karton
- Frischhaltefolie als Trennfläche
- Glasfaser
- Araldite
- Leitfläche aus Balsaholz

Arbeitsablauf

- Leitfläche aus Holz ausschneiden
- Leitfläche in fertige Form schleifen
- 2 Masken aus Karton erstellen
 - Dicke Karton ist ½ der Holzdicke
 - Jede Maske auf eine Glasplatte kleben
 - Frischhaltefolie darüber befestigen
 - Glasfaser über Folie befestigen
- Leitflächen kleben
 - Auf Leitfläche Araldit einseitig auftragen
 - In Maske legen und festdrücken
 - Araldit auf zweite Seite auftragen
 - Zweite Maske darüberlegen und festdrücken
- Zum Trocken pressen

Konstruktion Leitflächen

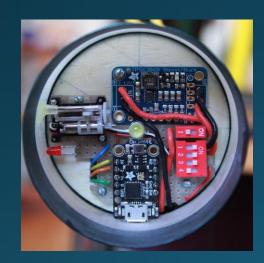
- Masken entfernen
 - Glasscheiben entfernen
 - Leitfläche aus Maske entfernen
 - Leitfläche ausschneiden
 - Rand in fertige Form schleifen
- Anbringen der Leitflächen
 - Sie werden am Schluss an den Druckkörper geklebt


Montage Nutzlastbehälter

Bereich Fallschirmverbindung

- Die Montage erfolgt über 3
 Schrauben am Druckkörper
- Adapter Platten
 - Platten für Nutzlastbehälter und Druckkörper
 - Form berücksichtigt Verbindung zum Fallschirm
 - Fallschirmschnur kann sich daran nicht beschädigen

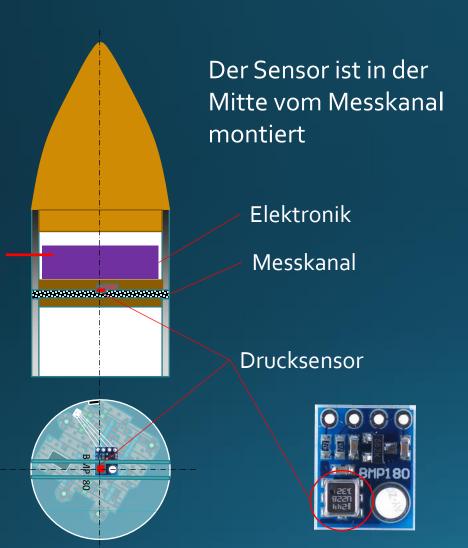
Konstruktion Raketenspitze

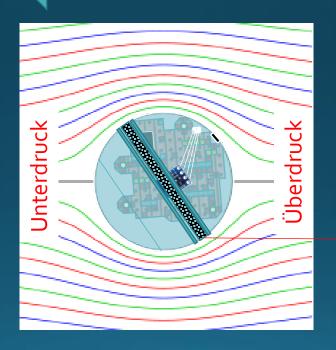


Messkanal Sensor

- Ist aus einem Styropor Kegel in Form geschliffen
- Die Oberfläche ist mit Araldite verstärkt
- Die Spitze lässt sich in den Nutzlastbehälter stecken
 - geschrumpfter Ring aus PET bildet das Verbindungsstück
- Fertiges Gewicht ca. 11 g
 - Innen leicht ausgehöhlt

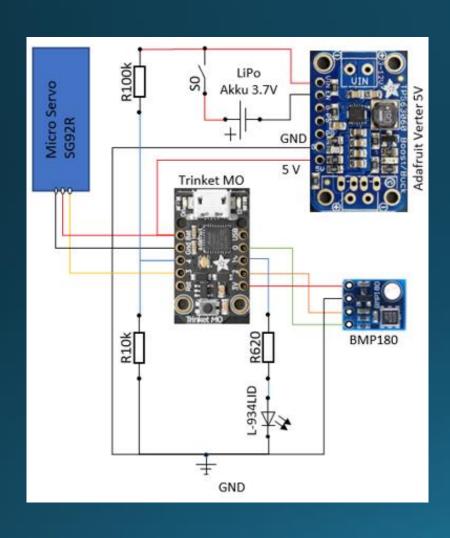
Auswurfmechanik für den Fallschirm



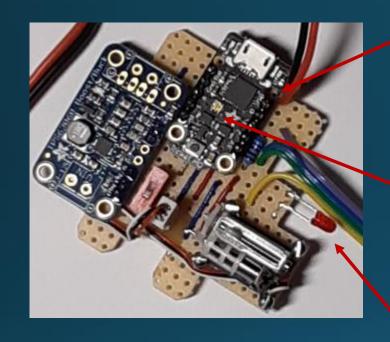


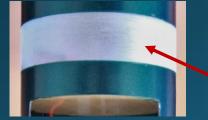
- Auswurf mit 2 Gummibänder
 - Gummiband für Nutzlastabdeckung
 - Gummiband für Fallschirmauswurf
- Luftdruck Messungen
 - Ermitteln von Start / Landung
 - Flughöhe und Geschwindigkeit
- Zeitpunkt Fallschirmauswurf
 - Höchster Flugpunkt detektiert oder
 - Timer abgelaufen
- Freigabe Nutzlastabdeckung
 - Linear Servo zieht Stift vom Gummiband

Messkanal für Druckluft Sensor


Windrichtung

Diagonaler Messkanal


- ⇒ kleines Volumen
- ⇒ Druckausgleich im Kanal
- ⇒ Windstabil


Elektronik - Bauteile

- Linear Servo
- Trinket MO Microprozessor
- 5V Buck-Boost 1000mA
- LEDs für
 - Flug- und Akku Status
 - Flughöhe, Starthöhe m.ü.M
- LiPo Akku 3.7V 400mAh
- Schalter Ein/Aus
- BMP₁80 Drucksensor
- Widerstände

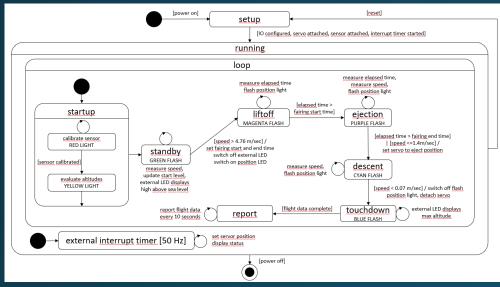
Elektronik - LED Anzeigen



LED Sichtfenster

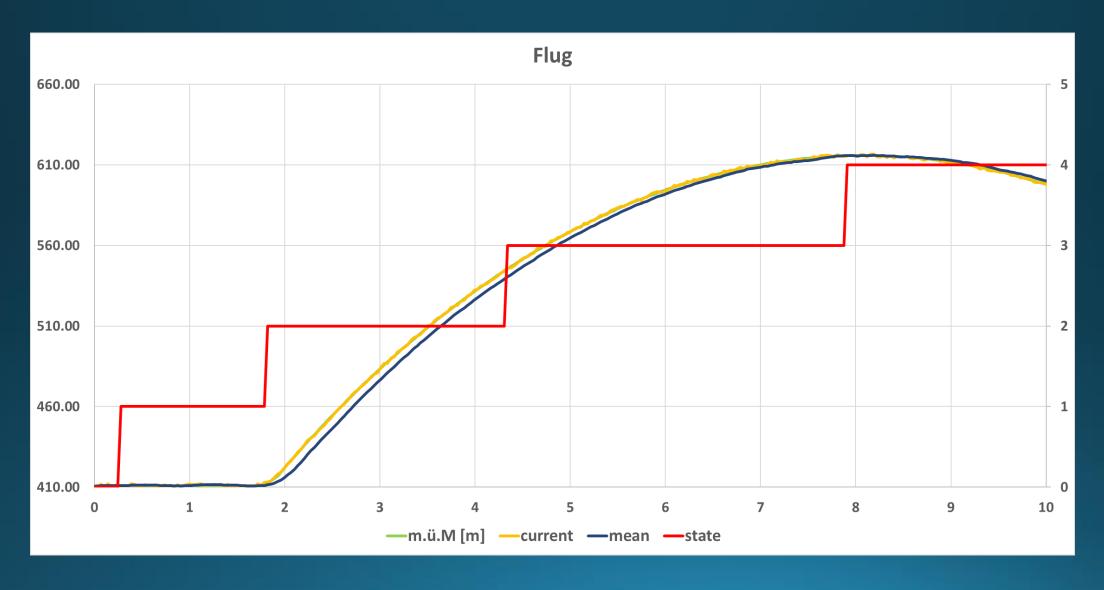
- Build in red pin #13 LED Trinket MO
 - Vor dem Start: Akku Spannung
 - Nach Landung: Zeitpunkt der Fallschirmfreigabe
- DotStarTrinket MO
 - Vor Start: LiPo Akku Status (Restlaufzeit > 4h grün,
 3h gelb, < 2h rot)
 - Nach Landung: Maximal gemessene Flughöhe
- LED L-934LID
 - Vor dem Start: Meter über Meer
 - Nach Landung: Gemittelte maximale Flughöhe
- Anzeigen sind über das Sichtfenster ablesbar

Elektronik - Betriebsarten

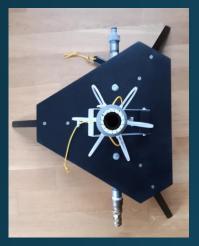

- Programmieren vom Microprozessor
 - Schalter in AUS Stellung, USB zum PC angeschlossen
 - Trinket MO verwendet die Speisung vom USB Anschluss
 - Servo hat keine 5V Speisung
- Debuggen mit eingeschaltetem Servo
 - Schalter in EIN Stellung, USB zum PC angeschlossen
 - Trinket MO verwendet die Speisung vom USB Anschluss
 - Servo hat 5V Speisung von Adafruit Verter 5V
- Normalbetrieb Standby / Flug / Landung
 - Schalter in EIN Stellung, Speisung über Akku
 - Trinket MO verwendet Speisung von Adafruit Verter 5V
 - Servo hat 5V Speisung von Adafruit Verter 5V
- Auslesen der Flugdaten
 - Die Datenübertragung erfolgt über den USB Anschluss zum Notebook
 - Die Flugdaten werden alle 10 Sekunden über den seriellen Port (USB) ausgegeben

USB Anschluss

Entwicklung der Software



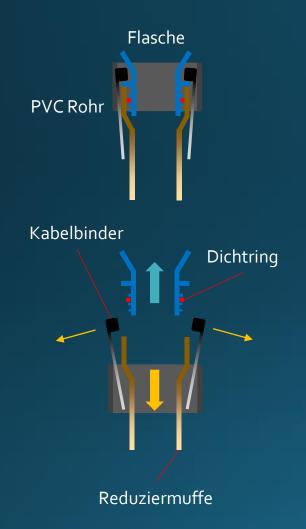
- Tool Arduino IDE
- Programmiersprache C++
- «Multitasking»
 - Ansteuerung LEDs
 - Druckmessung
 - Zustandsmaschine
 - Detektion von Start / höchster Flugpunkt / Landung
 - 50Hz Interrupt Timer f
 ür Servo
 - Für periodisches PWM Signal
 - Arduino Servo Lib ist nicht kompatible zu Trinket MO
 - Speichern der Flugdaten
 - Ausgabe der Flugdaten


Berechnungen mit Drucksensor

- Sensor Werte
 - Alle 35ms wird der aktuelle Höhenwert (Meter über Meer) ermittelt
 - Standardabweichung ist normalverteilt mit einem Wert von o.4
- Nach dem Einschalten wird der Sensor auf die Starthöhe kalibriert
- Alle 35ms werden folgende Werte ermittelt
 - Gleitender Mittelwert h_m aus 8 Höhenwerten
 - Minimalen h_{min} und maximalen h_{max} Mittelwert
 - Vertikale Geschwindigkeit v_m aus dem 1. und 8. Höhenwert
- Alle 35ms wird auf erfolgten Start / erreichen des höchsten Flugpunkts geprüft
 - Startzeitpunkt wenn v_m > 40 km/h
 - Apogee wenn $v_m < 14 \text{ km/h UND } h_{max} > h_m$
- Alle Sekunden wird auf erfolgte Landung geprüft
 - Merkt sich jede Sekunde den Mittelwert h_m
 - Landung ist erfolgt wenn die Geschwindigkeit aus den Mittelwerten < 0.54 km/h ist

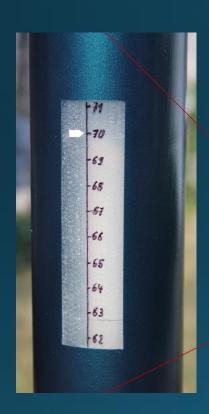
Simulation der Software

Konstruktion Startrampe



- Konzept gemäss RAKETFUED ROCKET
- Die Plattform steht auf 3 Füssen
- Sie ist mit 3 Erdnägeln gegen das Umkippen gesichert
- Launch Tube kann in das Kupferrohr eingesteckt werden
- Pneumatik Teile sind an der Plattform fest montiert

Druckanschluss / Start Rakete

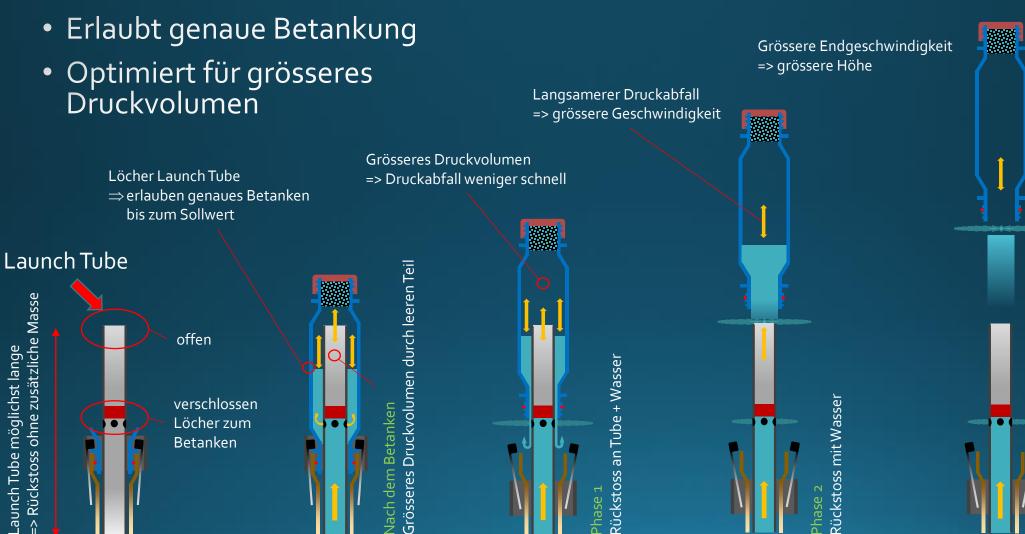




- Die Rakete (Flaschenhals) wird mit Kabelbinder und PVC Rohr festgehalten
- Der Freigabemechanismus wird über Schnur bedient
 - PVC Rohr wird nach unten gezogen
 - Kabelbinder werden freigegeben
- Die gesamte Flaschenöffnung wird als Raketendüse verwendet
- Dichtring am Gewindeende vom Flaschenverschluss

Betanken mit Wasser

- Die Markierung an der Rakete erlaubt eine bestimmte Menge zu betanken
- Beim Betanken wird zusätzlich eine Reserve einberechnet
- Die Reserve ist die Menge welche beim Druckaufbau verloren geht
 - Durch Videoanalyse bestimmt
- Durch dieses Konzept kann die erforderliche Menge Wasser genau betankt werden


Erzeugen der Druckluft

11 bar Kompressor

- Mit einem Kompressor wird Luft bis zum Sollwert reingepumpt
- Der Kompressor hat eine Druckanzeige in bar
- Der Kompressor wird ausgeschaltet wenn der Druck erreicht ist
- Durch das Rückschlagventil an der Startvorrichtung fliesst kein Wasser in die Luftzufuhr

Launch Tube - Optimiertes Design

Rückstoss mit restlicher Druckluft

Flughöhe – Abhängige Werte

• Luftdichte • Temperatur Erdanziehung

Geografische

Gewicht

Luftwiderstand

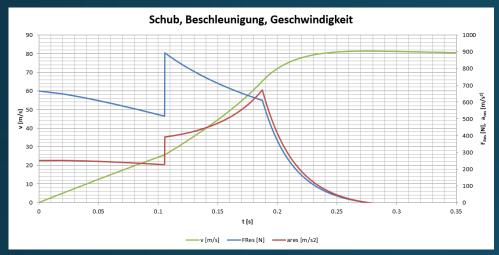
Volumen

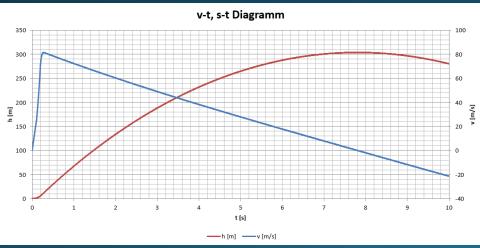
Düsendurchmesser

Maximaler Druck

Lage Startort

Rakete


Betankung


Startrampe

- Grosser Startdruck
- Genauigkeit Betankung
- Verhältnis Wasser / Druckluft

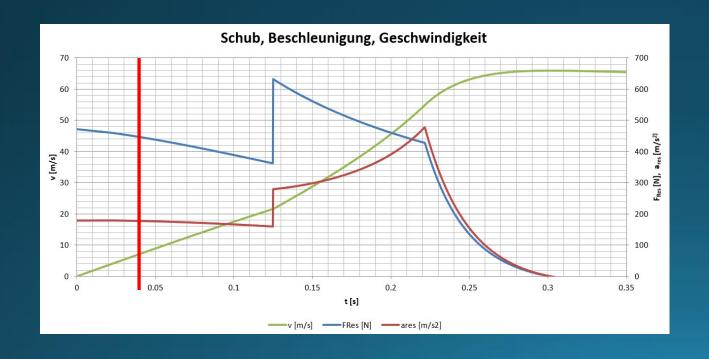
- Länge Launch Tube
- Art der Startführung
- Maximaler Druck

Berechnungen mit Excel

Rakete

- Leergewicht
- Schwerpunkt / Gierachse / Kaliber
- Luftwiderstand
- Maximaler Druck
- Startvorrichtung
 - Länge und Art der Launch Tube
 - Sollwert Wasseranzeige
- Fallschirm
 - Gewicht
 - Belastung und Sinkgeschwindigkeit
 - Vorschlag Timer Wert
- Simulation vertikaler Flugbahn
 - Betankungswerte und Flughöhe
 - Skalenwert f

 ür Betankung
 - Erwartenden Temperatur im Druckkörper
 - Diverse Grafiken für Höhe / Geschwindigkeit / Beschleunigung / Temperatur / Schub / Druckverlauf

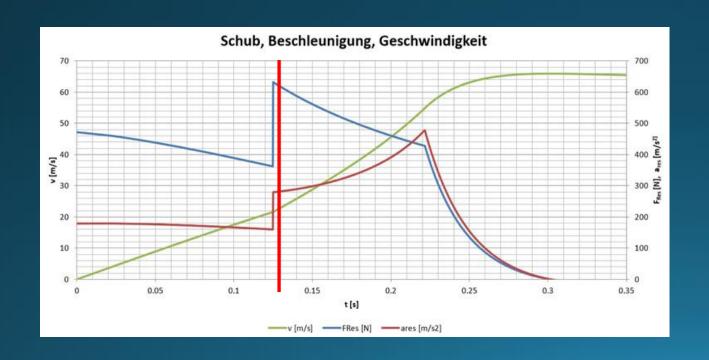

Flug Raptor III - Start

Zeitpunkt nach Start t = 40 ms

Rakete $25.7 \, \text{km/}_{h}$ 2.52 kg 0.14 m 18.09 G 446.5 N

Wasser 165.6 km/_h 1.62 kg

Luft o.o km/_h 4.50 l 51 g 10.56 bar

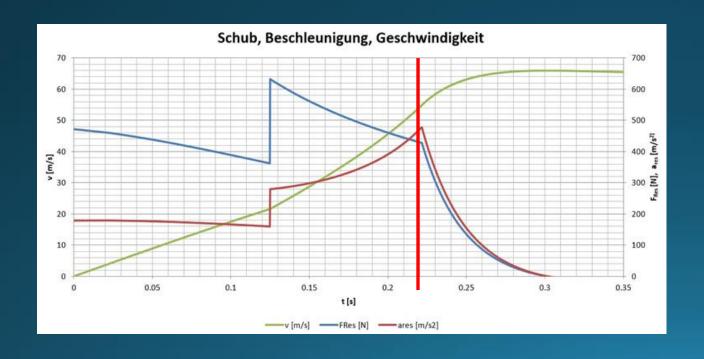

Flug Raptor III – Ende Launch Tube

Zeitpunkt nach Start t = 130 ms

Rakete 82.7 km/_h 2.19 kg 1.49 m 28.75 G 617.1 N

Wasser 147.6 km/_h 1.29 kg

Luft 0.0 km/_{h} 4.81 | 47 g 8.4 bar

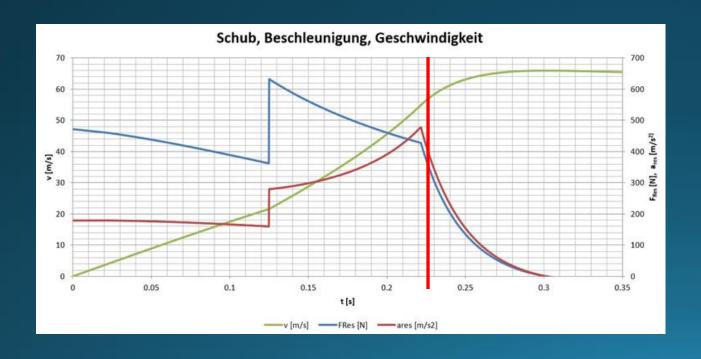

Flug Raptor III – Ende Wasserausstoss

Zeitpunkt nach Start t = 220 ms

Rakete $194.8 \, \text{km/}_{h} \, \text{o.92 kg} \, 4.84 \, \text{m} \, 47.92 \, \text{G} \, 430.2 \, \text{N}$

Wasser 122.6 km/_h 0.02 kg

Luft o.o km/_h 6.16 l 47 g 5.8 bar

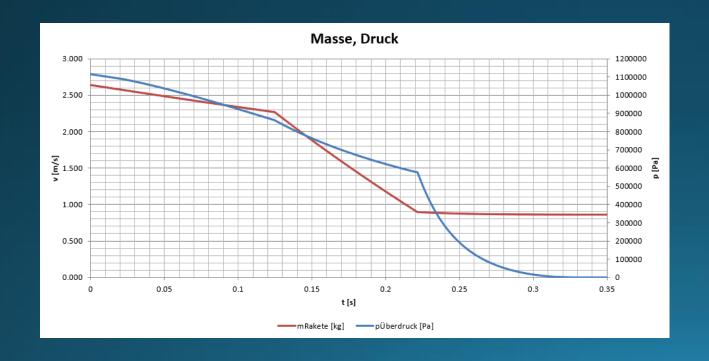

Flug Raptor III – Beginn Luftausstoss

Zeitpunkt nach Start t = 226 ms

Rakete $204.5 \, \text{km/}_{h} \, 0.89 \, \text{kg} \, 5.171 \, \text{m} \, 41.06 \, \text{G} \, 362 \, \text{N}$

Wasser o.o km/h o.oo kg

Luft 1345 km/_h 6.18 l 43 g 4.9 bar

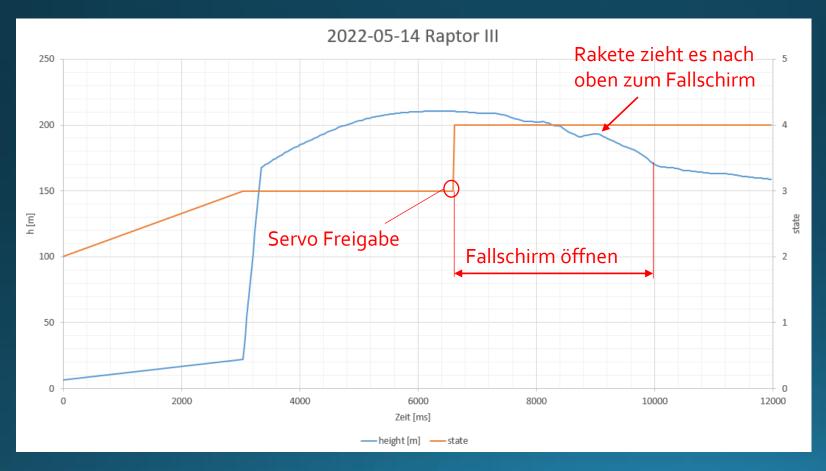

Flug Raptor III – Start Zeitlupe

Maximalwerte

Rakete $237.4 \, \text{km/}_{\text{h}} \, 211 \, \text{m}$ $48.67 \, \text{G}$ $632.1 \, \text{N}$

Wasser 170.15 km/_h

Luft 1391 km/_h 11.15 bar 88.5 bis -95 °C



Flug Raptor III – Auswurf Fallschirm

Freigabe 0.2 s nach dem höchsten Flugpunkt

2 Sekunden nach Freigabe wird Rakete zum Fallschirm gezogen

Stabile Gleitphase nach 3.5 s erreicht

